Home
Class 12
MATHS
Let a,b in R and a^(2) + b^(2) ne 0 . ...

Let a,b ` in ` R and `a^(2) + b^(2) ne 0` . Suppose `S = { z in C: z = (1)/(a+ ibt),t in R, t ne 0}`, where `i= sqrt(-i)`. If `z = x + iy` and z in S, then (x,y) lies on

A

the circle with radius `1/(2a)` and centre `(1/(2a),0)` for `agt0,bne0`

B

the circle with radius `-1/(2a)` and centre `(-1/(2a),0)` for `alt0,bne0`

C

the x - axis `a ne 0, b = 0 `

D

the y - axis for `a=0,bne 0`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 4 (LEVEL -I) PREVIOUS YEAR - JEE MAIN|12 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos

Similar Questions

Explore conceptually related problems

Let a,b in R and a^(2) + b^(2) ne 0 . Suppose S = { z in C: z = (1)/(a+ ibt),t in R, t ne 0} , where i= sqrt(-1) . If z = x + iy and z in S, then (x,y) lies on

Let 0 ne a, 0 ne b in R . Suppose S={z in C, z=1/(a+ibt)t in R, t ne 0} , where i=sqrt(-1) . If z=x+iy and z in S , then (x,y) lies on

Let a,b in R and a^2+ b^2 ne 0 Suppose S={z in C : z =(1)/(alpha +I bt ), t in R, t ne 0 } where I= sqrt(-1) if z=x +iy and ne S, then (x,y) lies on

If |(z +4)/(2z -1)|=1, where z =x +iy. Then the point (x,y) lies on a:

If Re((z-1)/(2z+i))=1, where z=x+iy ,then the point (x,y) lies on a

If x, y, a, b in R, a ne 0 and (a + ib) (x + iy) = (a^(2) + b^(2))i , then (x, y) equals

Let A = {z : z in C, iz^(3) + z^(2) -z + i=0} and B ={z : z in C, |z|=1} , Then

If z = x + iy, x , y in R , then the louts Im (( z - 2 ) /(z + i)) = (1 ) /(2) represents : ( where i= sqrt ( - 1))

If z+sqrt(2)|z+1|+i=0 and z=x+iy then

MOTION-COMPLEX NUMBER -EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED
  1. Match the statement in Column I with those in Column II. [Note : He...

    Text Solution

    |

  2. Let a, b and c be three real numbers satisfying [a" "b" "c][[1,9,7],[...

    Text Solution

    |

  3. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  4. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  5. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  6. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  7. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |

  8. Let z be a complex number such that the imaginary part of z is nonzero...

    Text Solution

    |

  9. Let complex numbers alpha " and " (1)/(bar alpha) lies on circles (...

    Text Solution

    |

  10. Let w = (sqrt 3 + iota/2) and P = { w^n : n = 1,2,3, ..... }, Further ...

    Text Solution

    |

  11. Let omega be a complex cube root of unity with omegane1 and P = [pij]...

    Text Solution

    |

  12. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  13. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  14. Let zk=cos((2kpi)/(10))+isin ((2kpi)/10),k=1,2,......9 {:("List I","...

    Text Solution

    |

  15. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |

  16. Let a,b in R and a^(2) + b^(2) ne 0 . Suppose S = { z in C: z = (1...

    Text Solution

    |

  17. Let P=[{:((-z)^r,z^(2r)),(z^(2r),z^r):}] and Ibe the identity matrix o...

    Text Solution

    |

  18. Let a , b ,xa n dy be real numbers such that a-b=1a n dy!=0. If the co...

    Text Solution

    |

  19. Let s ,\ t ,\ r be non-zero complex numbers and L be the set of ...

    Text Solution

    |

  20. For a non-zero complex number z , let arg(z) denote the principal ar...

    Text Solution

    |