Home
Class 12
MATHS
Let a , b ,xa n dy be real numbers such ...

Let `a , b ,xa n dy` be real numbers such that `a-b=1a n dy!=0.` If the complex number `z=x+i y` satisfies `I m((a z+b)/(z+1))=y` , then which of the following is (are) possible value9s) of x?| `-1-sqrt(1-y^2)` (b) `1+sqrt(1+y^2)` `-1+sqrt(1-y^2)` (d) `-1-sqrt(1+y^2)`

A

`1-sqrt(1+y^2)`

B

`-1-sqrt(1+y^2)`

C

`1+sqrt(1+y^2)`

D

`-1+sqrt(1+y^2)`

Text Solution

Verified by Experts

The correct Answer is:
B, D
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBER

    MOTION|Exercise EXERCISE - 4 (LEVEL -I) PREVIOUS YEAR - JEE MAIN|12 Videos
  • CIRCLE

    MOTION|Exercise Exercise - 4 | Level - II (Previous Year | JEE Advanced|22 Videos
  • CONTINUITY

    MOTION|Exercise EXERCISE - 4 (LEVEL -II) (PREVIOUS YEAR JEE ADVANCED)|5 Videos

Similar Questions

Explore conceptually related problems

Let a , b ,xa n dy be real numbers such that a-b=1a n dy!=0. If the complex number z=x+i y satisfies I m((a z+b)/(z+1))=y , then which of the following is (are) possible value9s) of x? (a)-1-sqrt(1-y^2) (b) 1+sqrt(1+y^2) (c)-1+sqrt(1-y^2) (d) -1-sqrt(1+y^2)

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y),show(dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

The solution of x sqrt(1+y^(2))dx+y sqrt(1+x^(2))dy=0

Solve the following differential equation: x sqrt(1-y^(2))dx+y sqrt(1-x)dy=0

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If the complex number z=x+i y satisfies the condition |z+1|=1, then z lies on (a)x axis (b) circle with centre(-1,0) and radius1 (c)y-axis (d) none of these

Show : sqrt( x^-1y) times sqrt( y^-1z ) times sqrt( z^-1x) = 1

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

MOTION-COMPLEX NUMBER -EXERCISE - 4 (LEVEL -II) PREVIOUS YEAR - JEE ADVANCED
  1. Match the statement in Column I with those in Column II. [Note : He...

    Text Solution

    |

  2. Let a, b and c be three real numbers satisfying [a" "b" "c][[1,9,7],[...

    Text Solution

    |

  3. Let omega be the solution of x^(3)-1=0 with "Im"(omega) gt 0. If a=2 w...

    Text Solution

    |

  4. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  5. If z is any complex number satisfying abs(z-3-2i) le 2, where i=sqrt(-...

    Text Solution

    |

  6. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  7. Let omega= e^((ipi)/3) and a, b, c, x, y, z be non-zero complex numb...

    Text Solution

    |

  8. Let z be a complex number such that the imaginary part of z is nonzero...

    Text Solution

    |

  9. Let complex numbers alpha " and " (1)/(bar alpha) lies on circles (...

    Text Solution

    |

  10. Let w = (sqrt 3 + iota/2) and P = { w^n : n = 1,2,3, ..... }, Further ...

    Text Solution

    |

  11. Let omega be a complex cube root of unity with omegane1 and P = [pij]...

    Text Solution

    |

  12. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  13. Let S=S1 nn S2 nn S3, where s1={z in C :|z|<4}, S2={z in C :ln[(z-...

    Text Solution

    |

  14. Let zk=cos((2kpi)/(10))+isin ((2kpi)/10),k=1,2,......9 {:("List I","...

    Text Solution

    |

  15. For any integer k , let alphak=cos(kpi)/7+isin(kpi)/7,w h e r e i=sqrt...

    Text Solution

    |

  16. Let a,b in R and a^(2) + b^(2) ne 0 . Suppose S = { z in C: z = (1...

    Text Solution

    |

  17. Let P=[{:((-z)^r,z^(2r)),(z^(2r),z^r):}] and Ibe the identity matrix o...

    Text Solution

    |

  18. Let a , b ,xa n dy be real numbers such that a-b=1a n dy!=0. If the co...

    Text Solution

    |

  19. Let s ,\ t ,\ r be non-zero complex numbers and L be the set of ...

    Text Solution

    |

  20. For a non-zero complex number z , let arg(z) denote the principal ar...

    Text Solution

    |