Home
Class 12
MATHS
Two tangents to the parabola y^(2) = 8x ...

Two tangents to the parabola `y^(2) = 8x` meet the tangent at its vertex in the points P & Q. If PQ = 4 units, prove that the locus of the point of the intersection of the two tangents is `y^(2) = 8 (x + 2)`.

Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    MOTION|Exercise EXERCISE - IV|33 Videos
  • PARABOLA

    MOTION|Exercise EXERCISE - II|17 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 4 ( Level-II ) Previous Year (Paragraph)|2 Videos
  • PERMUTATION AND COMBINATION

    MOTION|Exercise EXAMPLE|23 Videos

Similar Questions

Explore conceptually related problems

The locus of the point of intersection of the perpendicular tangents to the parabola x^(2)=4ay is

The tangents to the parabola y^(2)=4ax at the vertex V and any point P meet at Q. If S is the focus,then prove that SP.SQ, and SV are in G.

The ,locus of the point of intersection of two perpendicular tangents to the parabola y^(2)=4ax is

The locus of the point of intersection of two prependicular tangents of the ellipse x^(2)/9+y^(2)/4=1 is

The locus of the point of intersection of the perpendicular tangents to the parabola x^(2)-8x+2y+2=0 is

If the tangents to the parabola y^(2)=4ax intersect the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 at A and B, then find the locus of the point of intersection of the tangents at A and B.

If a tangent to the circle x^(2)+y^(2)=1 intersects the coordinate axes at distinct points P and Q, then the locus of the mid-point of PQ is :

the abscissae of any two points on the parabola y^(2)=4ax are in the ratio u:1. prove that the locus of the point of intersection of tangents at these points is y^(2)=(u^((1)/(4))+u^(-((1)/(4))))^(2)ax

MOTION-PARABOLA-EXERCISE - III
  1. From vertex O ofthe parabola y^2=4ax perpendicular is drawn at a tange...

    Text Solution

    |

  2. Let P be a point on the parabola y^(2) - 2y - 4x+5=0, such that the ta...

    Text Solution

    |

  3. Two tangents to the parabola y^(2) = 8x meet the tangent at its vertex...

    Text Solution

    |

  4. Show that the normals at the points (4a, 4a) & at the upper end of t...

    Text Solution

    |

  5. In the parabola y^(2) = 4ax, the tangent at the point P, whose absciss...

    Text Solution

    |

  6. Prove that the locus of the middle point of portion of a normal to y^(...

    Text Solution

    |

  7. Three normals to y^2=4x pass through the point (15, 12). Show that one...

    Text Solution

    |

  8. Normals are drawn from a point P with slopes m1,m2 and m3 are drawn fr...

    Text Solution

    |

  9. Prove that, the normal to y^(2) = 12x at (3,6) meets the parabola agai...

    Text Solution

    |

  10. P & Q are the points of contact of the tangents drawn from the point T...

    Text Solution

    |

  11. A variable chord PQ of the parabola y^(2) = 4x is drawn parallel to th...

    Text Solution

    |

  12. Show that the normals at two suitable distinct real points on the para...

    Text Solution

    |

  13. Let S is the focus of the parabola y^(2) = 4ax and X the foot of the d...

    Text Solution

    |

  14. Prove that the parabola y^(2) = 16x and the circle x^(2) + y^(2) - 40x...

    Text Solution

    |

  15. .Find the equation ofthe circle which passes through the focus ofthe p...

    Text Solution

    |

  16. A fixed parabola y^(2) = 4ax touches a variable parabola. Find the equ...

    Text Solution

    |

  17. Show that an infinite number of triangles can be inscribed in either o...

    Text Solution

    |

  18. From the point P(h, k) three normals are drawn to the parabola x^(2) =...

    Text Solution

    |

  19. From the point P(h, k) three normals are drawn to the parabola x^(2) =...

    Text Solution

    |

  20. From the point P(h, k) three normals are drawn to the parabola x^(2) =...

    Text Solution

    |