Home
Class 12
MATHS
Normals are drawn from a point P with sl...

Normals are drawn from a point P with slopes `m_1,m_2 and m_3` are drawn from the point p not from the parabola `y^2=4x`. For `m_1m_2=alpha`, if the locus of the point P is a part of the parabola itself, then the value of `alpha` is (a) 1 (b)-2 (c) 2 (d) -1

Text Solution

Verified by Experts

The correct Answer is:
a=2
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    MOTION|Exercise EXERCISE - IV|33 Videos
  • PARABOLA

    MOTION|Exercise EXERCISE - II|17 Videos
  • MONOTONOCITY

    MOTION|Exercise Exercise - 4 ( Level-II ) Previous Year (Paragraph)|2 Videos
  • PERMUTATION AND COMBINATION

    MOTION|Exercise EXAMPLE|23 Videos

Similar Questions

Explore conceptually related problems

Three normals with slopes m_(1),m_(2) and m_(3) are down from a point P not on the axis of the axis of the parabola y^(2)=4x. If m_(1)m_(2)=alpha, results in the locus of P being a part of parabola,Find the value of alpha

If two tangents drawn from a point P to the parabola y^(2)=16 (x-3) are at right angles, then the locus of point P is :

Perpendicular tangents are drawn from an external point P to the parabola y^2=16(x-3) Then the locus of point P is

Number of normals can be drawn from point (1,2) on the parabola y^(2)=12x

Normals are drawn from the interior point P to the parabola y^(2)=4x such that product of two slope is alpha , if locus of P is parabola itself then alpha is _________

Normals are drawn at points A,B, and C on the parabola y^(2)=4x which intersect at P.The locus of the point P if the slope of the line jocuing the feet of two of them is 2, is

If two tangents drawn from the point P (h,k) to the parabola y^2=8x are such that the slope of one of the tangent is 3 times the slope of the other , then the locus of point P is

MOTION-PARABOLA-EXERCISE - III
  1. From vertex O ofthe parabola y^2=4ax perpendicular is drawn at a tange...

    Text Solution

    |

  2. Let P be a point on the parabola y^(2) - 2y - 4x+5=0, such that the ta...

    Text Solution

    |

  3. Two tangents to the parabola y^(2) = 8x meet the tangent at its vertex...

    Text Solution

    |

  4. Show that the normals at the points (4a, 4a) & at the upper end of t...

    Text Solution

    |

  5. In the parabola y^(2) = 4ax, the tangent at the point P, whose absciss...

    Text Solution

    |

  6. Prove that the locus of the middle point of portion of a normal to y^(...

    Text Solution

    |

  7. Three normals to y^2=4x pass through the point (15, 12). Show that one...

    Text Solution

    |

  8. Normals are drawn from a point P with slopes m1,m2 and m3 are drawn fr...

    Text Solution

    |

  9. Prove that, the normal to y^(2) = 12x at (3,6) meets the parabola agai...

    Text Solution

    |

  10. P & Q are the points of contact of the tangents drawn from the point T...

    Text Solution

    |

  11. A variable chord PQ of the parabola y^(2) = 4x is drawn parallel to th...

    Text Solution

    |

  12. Show that the normals at two suitable distinct real points on the para...

    Text Solution

    |

  13. Let S is the focus of the parabola y^(2) = 4ax and X the foot of the d...

    Text Solution

    |

  14. Prove that the parabola y^(2) = 16x and the circle x^(2) + y^(2) - 40x...

    Text Solution

    |

  15. .Find the equation ofthe circle which passes through the focus ofthe p...

    Text Solution

    |

  16. A fixed parabola y^(2) = 4ax touches a variable parabola. Find the equ...

    Text Solution

    |

  17. Show that an infinite number of triangles can be inscribed in either o...

    Text Solution

    |

  18. From the point P(h, k) three normals are drawn to the parabola x^(2) =...

    Text Solution

    |

  19. From the point P(h, k) three normals are drawn to the parabola x^(2) =...

    Text Solution

    |

  20. From the point P(h, k) three normals are drawn to the parabola x^(2) =...

    Text Solution

    |