Home
Class 12
MATHS
If alpha and beta are the roots of the q...

If `alpha` and `beta` are the roots of the quation `ax^(2)+bx+c=0`, then find the equation whose roots are given by
(i) `alpha+1/(beta), beta+1/(alpha)`
(ii) `alpha^(2)+2,beta^(2)+2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we will find the equations whose roots are specified in the question. We will tackle each part separately. ### Part (i): Roots are \( \alpha + \frac{1}{\beta} \) and \( \beta + \frac{1}{\alpha} \) 1. **Identify the roots**: The roots are given as \( r_1 = \alpha + \frac{1}{\beta} \) and \( r_2 = \beta + \frac{1}{\alpha} \). 2. **Simplify the roots**: - We can express \( r_1 \) and \( r_2 \) in a common form: \[ r_1 = \alpha + \frac{1}{\beta} = \alpha + \frac{\alpha}{\alpha \beta} = \frac{\alpha^2 + 1}{\beta} \] \[ r_2 = \beta + \frac{1}{\alpha} = \beta + \frac{\beta}{\alpha \beta} = \frac{\beta^2 + 1}{\alpha} \] 3. **Use Vieta's formulas**: - From the original quadratic equation \( ax^2 + bx + c = 0 \), we know: - \( \alpha + \beta = -\frac{b}{a} \) - \( \alpha \beta = \frac{c}{a} \) 4. **Calculate the sum of the roots**: \[ r_1 + r_2 = \left( \alpha + \frac{1}{\beta} \right) + \left( \beta + \frac{1}{\alpha} \right) = (\alpha + \beta) + \left( \frac{1}{\beta} + \frac{1}{\alpha} \right) \] \[ = -\frac{b}{a} + \frac{\alpha + \beta}{\alpha \beta} = -\frac{b}{a} + \frac{-\frac{b}{a}}{\frac{c}{a}} = -\frac{b}{a} - \frac{b}{c} \] \[ = -\frac{b(c + a)}{ac} \] 5. **Calculate the product of the roots**: \[ r_1 \cdot r_2 = \left( \alpha + \frac{1}{\beta} \right) \left( \beta + \frac{1}{\alpha} \right) = \alpha \beta + \frac{\alpha}{\alpha} + \frac{\beta}{\beta} + \frac{1}{\alpha \beta} \] \[ = \alpha \beta + 1 + 1 + \frac{1}{\alpha \beta} = \frac{c}{a} + 2 + \frac{a}{c} \] 6. **Form the new quadratic equation**: - The new quadratic equation can be formed using the sum and product of the roots: \[ x^2 - \left( -\frac{b(c + a)}{ac} \right)x + \left( \frac{c}{a} + 2 + \frac{a}{c} \right) = 0 \] ### Part (ii): Roots are \( \alpha^2 + 2 \) and \( \beta^2 + 2 \) 1. **Identify the roots**: The roots are \( r_1 = \alpha^2 + 2 \) and \( r_2 = \beta^2 + 2 \). 2. **Calculate the sum of the roots**: \[ r_1 + r_2 = (\alpha^2 + 2) + (\beta^2 + 2) = \alpha^2 + \beta^2 + 4 \] - Using the identity \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \): \[ = \left( -\frac{b}{a} \right)^2 - 2 \cdot \frac{c}{a} + 4 = \frac{b^2}{a^2} - \frac{2c}{a} + 4 \] 3. **Calculate the product of the roots**: \[ r_1 \cdot r_2 = (\alpha^2 + 2)(\beta^2 + 2) = \alpha^2\beta^2 + 2\alpha^2 + 2\beta^2 + 4 \] - Using \( \alpha^2\beta^2 = (\alpha\beta)^2 = \left( \frac{c}{a} \right)^2 \): \[ = \left( \frac{c}{a} \right)^2 + 2(\alpha^2 + \beta^2) + 4 = \left( \frac{c}{a} \right)^2 + 2\left( \frac{b^2}{a^2} - \frac{2c}{a} \right) + 4 \] 4. **Form the new quadratic equation**: - The new quadratic equation can be formed using the sum and product of the roots: \[ x^2 - \left( \frac{b^2}{a^2} - \frac{2c}{a} + 4 \right)x + \left( \left( \frac{c}{a} \right)^2 + 2\left( \frac{b^2}{a^2} - \frac{2c}{a} \right) + 4 \right) = 0 \]
Promotional Banner

Topper's Solved these Questions

  • QUADRATIC EQUATION

    MOTION|Exercise EXERCISE 4 (PREVIOUS YEAR| JEE MAIN)|25 Videos
  • QUADRATIC EQUATION

    MOTION|Exercise EXERCISE -2 (MCQ)|9 Videos
  • PERMUTATION AND COMBINATION

    MOTION|Exercise EXAMPLE|23 Videos
  • SEQUENCE & SERIES

    MOTION|Exercise Exercise -4 Level -II Previous Year /JEE Advanced|22 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are the roots of the equation ax^(2)+bx+c=0, then find the equation whose roots are given by (i)alpha+(1)/(beta),beta+(1)/(alpha)

If alpha and beta be the roots of the equation ax^(2)+bx+c=0 then equation whose roots are alpha+beta and alpha beta is

If alpha, beta are the roots of the equation x^(2)-ax+b=0 .then the equation whose roots are 2 alpha+(1)/(beta), 2 beta+(1)/(alpha) is

If alpha " & " beta are the roots of equation ax^(2) + bx + c = 0 then find the Quadratic equation whose roots are (1)/(alpha) " & " (1)/(beta)

If alpha, beta are the roots of the equation ax^(2)+bx+c=0 , a!=0 then alpha+beta =

if alpha and beta are the roots of the equation ax^(2)+bx+c=0 then the equation whose roots are (1)/(alpha+beta),(1)/(alpha)+(1)/(beta) is equal to

If alpha " & " beta are the roots of equation ax^(2) + bx + c = 0 then find the quadratic equation whose roots are alpha + 1 " & " beta + 1

If alpha " & " beta are the roots of equation ax^(2) + bx + c= 0 then find the quadratic equation whose roots are alpha^(2) " & " beta^(2)

MOTION-QUADRATIC EQUATION-EXERCISE -3 (SUBJECTIVE)
  1. For what value of a the equation (a^2-a-2)x^2+(a^2-4)x+(a^2-3a+2)=0 wi...

    Text Solution

    |

  2. If alpha and beta are the roots of the quation ax^(2)+bx+c=0, then fin...

    Text Solution

    |

  3. If alpha!= beta but alpha^2 = 5alpha-3, beta^2 = 5beta - 3, then find ...

    Text Solution

    |

  4. If one root of equation (l-m) x^2 + lx + 1 = 0 be double of the other ...

    Text Solution

    |

  5. If alpha, beta are the roots fo the equation lamda(x^(2)-x)+x+55=0. If...

    Text Solution

    |

  6. If one root of the equation ax^2+bx+c=0 is the square of the other, pr...

    Text Solution

    |

  7. Show that the roots of the equation (a^(2)-bc)x^(2)+2(b^(2)-ac)x+c^(2)...

    Text Solution

    |

  8. If a x^2+b x+c=0a n db x^2+c x+a=0 have a common root and a, b, and c ...

    Text Solution

    |

  9. lf the quadratic equations x^2+bx+c=0 and bx^2+cx+1=0 have a common r...

    Text Solution

    |

  10. If the quadratic equations x^2+bx+ca=0 & x^2+cx+ab=0 (where a!= 0) ha...

    Text Solution

    |

  11. Solve the equation x^4 + 4x^3 + 5x^2 + 2x-2=0, one root being -1+sqrt...

    Text Solution

    |

  12. If alpha, beta, gamma are the roots of the equation x^3 + px^2 + qx + ...

    Text Solution

    |

  13. If alpha,betaa n dgamma are roots of 2x 63+x^3-7=0 , then find the val...

    Text Solution

    |

  14. Let alpha+ibeta,alpha, beta epsilon R, be a root of the equation x^(3)...

    Text Solution

    |

  15. Let alpha,beta,gamma are the roots of the cubic x^3-3x^2+1=0 .Find a c...

    Text Solution

    |

  16. Two roots of a biquadratic x^4-18x^3+ kx^2+ 200x-1984=0 have their pro...

    Text Solution

    |

  17. Suppose a cubic polynomial f(x) = x^3 + px^2 + qx + 72 is divisible by...

    Text Solution

    |

  18. If g(x)=x^(3)+px^(2)+qx+r where p,q,r are integers. If g(0) and g(-1)...

    Text Solution

    |

  19. If x be real then find the range of the following rational expressions...

    Text Solution

    |

  20. Find the values of k for which |(x^2+k x+1)/(x^2+x+1)|<2,AAx in R

    Text Solution

    |