Home
Class 12
MATHS
Show that the straight line xcosalpha=p ...

Show that the straight line `xcosalpha=p` touches the curve `x y=a^2,` if `p^2=4a^2cosalphasinalphadot`

Promotional Banner

Topper's Solved these Questions

  • TANGENT & NORMAL

    MOTION|Exercise EXERCISE 1|31 Videos
  • TANGENT & NORMAL

    MOTION|Exercise EXERCISE 2|23 Videos
  • STRAIGHT LINE

    MOTION|Exercise Exercise 4 Lelvel -II|7 Videos
  • THEORY AND EXERCISE BOOK

    MOTION|Exercise EXERCISE - 4 (LEVEL -II)|22 Videos

Similar Questions

Explore conceptually related problems

Show that the straight line x cos alpha+y sin alpha=p touches the curve xy=a^(2), if p^(2)=4a^(2)cos alpha sin alpha

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ s in^2alpha=p^2 .

The number of values of c such that the straight line y=4x+c touches the curve (x^(2))/(4)+y^(2)=1 is k then, k is

show that the straight line (x)/(a)+(y)/(b)=2 touches the curve ((x)/(a))^(3)+((y)/(b))^(3)=2; find the coordinates of the point of contact

If the straight line x cos alpha+y sin alpha=p touches the curve ((x)/(a))^(n)+((y)/(b))^(n)=2 at the point (a,b) on it,then (1)/(a^(2))+(1)/(b^(2))=

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha-b^(2)sin^(2)alpha=p^(2)

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha+b^(2)sin^(2)alpha=p^(2)

If the line x cos alpha+y sin alpha=P touches the curve 4x^(3)=27ay^(2), then (P)/(a)=

If the line x+y=0 touches the curve 2y^(2)=ax^(2)+b at (1,-1), then