Home
Class 12
MATHS
Consider f(x)=tan^(-1)(sqrt((1+sinx)/(1-...

Consider `f(x)=tan^(-1)(sqrt((1+sinx)/(1-sinx))), x in (0,pi/2)dot` A normal to `y=f(x)` at `x=pi/6` also passes through the point: (1) (0, 0) (2) `(0,(2pi)/3)` (3) `(pi/6,0)` (4) `(pi/4,0)`

A

`(0,(2pi)/3)`

B

`(pi/6,0)`

C

`(pi/4,0)`

D

(0,0)

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • TANGENT & NORMAL

    MOTION|Exercise EXERCISE 3|36 Videos
  • STRAIGHT LINE

    MOTION|Exercise Exercise 4 Lelvel -II|7 Videos
  • THEORY AND EXERCISE BOOK

    MOTION|Exercise EXERCISE - 4 (LEVEL -II)|22 Videos

Similar Questions

Explore conceptually related problems

Consider f(x)=tan^(-1)(sqrt((1+sin x)/(1-sin x))),x in(0,(pi)/(2))*A normal to y=f(x) at x=(pi)/(6) also passes through the point: (1)(0,0)(2)(0,(2 pi)/(3))(3)((pi)/(6),0)(4)((pi)/(4),0)

If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2 , then f'(pi/6) is

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

int_(0)^(pi)(x sinx)/((1+sinx))dx=pi((pi)/(2)-1)

If 0

cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=(x)/(2), x in (0,(pi)/(4))

If y(x) = cot^(-1) ((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))), x in ((pi)/(2), pi) , then (dy)/(dx) at x=(5pi)/(6) is :

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

f(x)=[x tan^(-1)x+sec^(-1)((1)/(x)),x in(-1,1)-{0} and (pi)/(2), if x=0, then f'(0) is