Home
Class 12
MATHS
If f(x)=[|x|], then int0^100 f(x)dx is e...

If `f(x)=[|x|],` then `int_0^100 f(x)dx` is equal to (where [.] denotes the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

The value of int_(0)^(100)[ tan ^(-1)x] d x is equal to (where [.] denotes the greatest integer function)

If z!=0, then int_(x=0)^(100)[arg|z|]dx is (where [.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

The value of int_0^([x]) 2^x/(2^([x])) dx is equal to (where, [.] denotes the greatest integer function)