Home
Class 12
MATHS
" The inverse of the function "y=(10^(x)...

" The inverse of the function "y=(10^(x)-10^(-x))/(10^(x)+10^(-x))" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The inverse of the function (10^(x)-10^(-x))/(10^(x)+10^(-x)) is

The inverse of the function f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is -

Find the inverse of the function : y=(10^(x)-10^(-x))/(10^(x)+10^(-x))+1

The inverse of (10^(x)-10^(-x))/(10^(x)+10^(-x)) is :

The domain of (10^(x) +10^(-x))/(10^(x)-10^(-x)) is:

Computer the inverse of the function : y = (10^(x) - 1)/(10^(x) + 1)

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x))=

The inverse of f(x)=(10^(x)-10^(-x))/(10^(x)+10^(-x)) is A). (1)/(2)log_(10)((1+x)/(1-x)) , B). log_(10)(2-x) , C). (1)/(2)log_(10)(2-1) , D). (1)/(4)log_(10)((2x)/(2-x))