Home
Class 10
MATHS
16,quad (0)-x^(2)+2x+1...

16,quad (0)-x^(2)+2x+1

Promotional Banner

Similar Questions

Explore conceptually related problems

The quadratic equation whose roots are sin^(2)18^(0)&cos^(2)36^(0) is (А) 16x^(2)-12x+1,=0 (В) 16x^(2)+12x+1=0 (C) 16x^(2)-12x-1=0 (D) 16x^(2)-10x-1=0

Let two numbers have arithmatic mean 9and geometric mean 4 .Then these numbers are roots of the equation (a) x^(2)+18x+16=0 (b) x^(2)-18x-16=0 (c) x^(2)+18x-16=0( d) x^(2)-18x+16=0

A-=(-4,0),B-=(4,0) M and N are the variable points of the y-axis such that M lies below N and M N=4 . Lines A M and B N intersect at Pdot The locus of P is (a) 2x y-16-x^2=0 (b) 2x y+16-x^2=0 (c) 2x y+16+x^2=0 (d) 2x y-16+x^2=0

A-=(-4,0),B-=(4,0)dotMa n dN are the variable points of the y-axis such that M lies below Na n dM N=4 . Lines A Ma n dB N intersect at Pdot The locus of P is (a) 2x y-16-x^2=0 (b) 2x y+16-x^2=0 (c) 2x y+16+x^2=0 (d) 2x y-16+x^2=0

Determine the nature of the roots of the following quadratic equations from their discriminant : (i) 3y^(2) + 9y+4=0 (ii) 2x^(2) + 5 sqrt(3)x + 16=0 (iii) 4x^(2) + 12x + 9=0 (iv) m^(2) + sqrt(2) m +1=0 (v) x^(2) - (1)/(2) x + (1)/( 16) = 0 (vi) x^(2) - 4x -4=0

Let two numbers have arithmatic mean 9 and geometric mean 4.Then these numbers are roots of the equation (a) x^2+18x+16=0 (b) x^2-18x-16=0 (c) x^2+18x-16=0 (d) x^2-18x+16=0

Let f(x)=x^(3)/3-x^(2)/2+x-16 . Find f^(')(0), f^(')(-1) .

A-=(-4,0),B-=(4,0)dotMa n dN are the variable points of the y-axis such that M lies below Na n dM N=4 . Lines A Ma n dB N intersect at Pdot The locus of P is a. 2x y-16-x^2=0 b. 2x y+16-x^2=0 c. 2x y+16+x^2=0 d. 2x y-16+x^2=0