Home
Class 12
MATHS
The value of lim(x->oo)1/(xsecx) is...

The value of `lim_(x->oo)1/(xsecx)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n->oo) n^(1/n)

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then the value of lim_(x->oo) f(x) is

If lm_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {{f(x)+(3f(x)−1)/(f_2(x))}=3 ,then the value of lim_(x->oo) f(x) is

The value of lim_(xto oo)e^(-x) is

The value of (lim)_(x->oo)2/x"log"(1+x) is equal to............

The value of lim_(x->oo) (x + e^x)^(2/x) is-

The value of lim_(x->oo)(1+1/x^n)^x,n>0 is

(lim)_(x->0)xsecx

If lim_(x->oo) f(x) exists and is finite and nonzero and if lim_(x->oo) {f(x)+(3f(x)−1)/(f^2(x))}=3 ,then find the value of lim_(x->oo) f(x)

The value of Lim_(x->oo)(xln(1+lnx/x))/lnx