Home
Class 11
MATHS
7*(x-1)/(sqrt(x^(2)-1))...

7*(x-1)/(sqrt(x^(2)-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=(1)/(2)(sqrt(7)+(1)/(sqrt(7))) ,then , log_(27)((sqrt(x^(2)-1))/(x-sqrt(x^(2)-1))) is equal to

Simplify : (x+sqrt(x^(2)-1))^(7) + (x-sqrt(x^(2)-1))^(7)

Integrate the functions (1.)(sec)^(2)(7-4x) (2.) (sin^(-1)x)/(sqrt(1-x^(2)))

(d)/(dx)[cos^(-1)(x sqrt(x)-sqrt((1-x)(1-x^(2))))]=(1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(-1)/(sqrt(1-x^(2)))-(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))+(1)/(2sqrt(x-x^(2)))(1)/(sqrt(1-x^(2)))0 b.1/4c.-1/4d none of these

If n be the degree of the polynomial sqrt(3x^(2)+1){(x+sqrt(3x^(2)+1))^(7)-(x-sqrt(3x^(2)+1))^(7)} then n is divisible by

lim_(x rarr1)((7+x^(3))^((1)/(3))-sqrt(3+x^(2)))/(x-1)=

lim_(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

lim_(xtooo) (x^(2)"tan"(1)/(x))/(sqrt(8x^(2)+7x+1)) is equal to

int(1)/(sqrt(x^(2)+7))dx

Choose the correct answer int sqrt(x^(2)-8x+7)dx(A)(1)/(2)(x-4)sqrt(x^(2)-8x+7)+9log|x-4+sqrt(x^(2)-8x+7)|+C(1)/(2)(x+4)sqrt(x^(2)-8x+7)+9log|x+4+sqrt(x^(2)-8x+7)|+C(C)(1)/(2)(x-4)sqrt(x^(2)-8x+7)-3sqrt(2)log|x-4+sqrt(x^(2)-8x+7)|+(1)/(2)(x-4)sqrt(x^(2)-8x+7)-((9)/(2))log|x-4+sqrt(x^(2)-8x+7)|