Home
Class 12
MATHS
" If "y^(3)-y=2x," prove that "(d^(2)y)/...

" If "y^(3)-y=2x," prove that "(d^(2)y)/(dx^(2))=-(24y)/((3y^(2)-1)^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

y^(3)-y=2x, provethat (d^(2)y)/(dx^(2))=(-24y)/((3y^(2)-1)^(3))

If y^3-y=2x , prove that (d^2y)/(dx^2)=-(24 y)/((3y^2-1)^3) .

If y^3-y=2x , prove that (d^2y)/(dx^2)=-(24 y)/((3y^2-1)^3) .

If y^3-y=2x ,p rov et h a t(d^2y)/(dx^2)=(-24 y)/((3y^2-1)^3)

If x^(3)+y^(3)-3axy=0 then prove that (d^(2)y)/(dx^(2))=(2a^(2)xy)/((ax-y^(2))^(3))

if x^(2)/a^(2) -y^(2)/b^(2) =1, " prove that " (d^(2)y)/(dx^(2)) = - b^(4)/(a^(2)y^(3))

If (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, prove that (d^(2)y)/(dx^(2))=-(b^(4))/(a^(2)y^(3))

If y=x^(3)log((1)/(x)) , prove that (d^(2)y)/(dx^(2))-(2)/(x)(dy)/(dx)+3x=0 .

y=5cos x-3sin x prove that (d^(2)y)/(dx^(2))+y=0