Home
Class 12
MATHS
[in^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2)...

[in^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2)," then find the value of "],[qquad x^(100)+y^(100)+z^(100)-(9)/(x^(101)+y^(101)+z^(101))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1) x +sin^(-1)y +sin^(-1) z =(3pi)/(2) , then find the value of x^(100) +y^(100) +z^(100) -(9)/(x^(101)+y^(101)+z^(101)) .

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2) ,then the value of x^(100)+y^(100)+z^(100)+(12)/(x^(101)+y^(101)+z^(101)) is equal to

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2) then the value of x^(100)+y^(100)+z^(100)-(3)/(x^(101)+y^(101)+z^(101))

If sin ^(-1) x + sin ^(-1) y + sin ^(-1) z = (3pi)/(2) then the value of x ^(100) + y ^(100) + z ^(100) - (3)/( x ^(101) + y^(101) + z ^(101)) is

If sin^(-1)x+sin^(-1)y+sin^(-1)z =(3pi)/2 , then find the value of x^2+y^2+z^2

If Sin^(-1)x+Sin^(-1)y+Sin^(-1)z=(3pi)/2 , then the value of x^(100)+y^(100)+z^(100)-9/(x^(101)+y^(101)+z^(101))

If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/2, find the value of x^2+y^2+z^2

Let x,y,z in[-1,1] such that sin^(-1)x+sin^(-1)y+sin^(-1)z=(3 pi)/(2). Find the value of x^(2016)+y^(2018)+z^(2020)-(9)/(x^(2016)+y^(2018)+z^(2020))