Home
Class 12
MATHS
If the ratio of the roots of the equatio...

If the ratio of the roots of the equation `ax^2+ bx+c=0` is m:n then (i) `m/n+n/m=b^2/(ac)` (ii) `sqrt(m/n)+sqrt(n/m)=sqrt(b^2/(ac))` (iii) `sqrt(m/n)+sqrt(n/m)=(b^2/(ac))` (iv) `m/n+n/m=a^2/b^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the equation ax^(2)+bx+c=0 are in the ratio m:n then

If the roots of the equation ax^(2)+bx+c=0 are in the ratio m:n then

If ratio of the roots of the equation ax^(2)+bx+c=0 is m:n then (A) (m)/(n)+(n)/(m)=(b^(2))/(ac) (B) sqrt((m)/(n))+sqrt((n)/(m))=(b)/(sqrt(ac))],[" (C) sqrt((m)/(n))+sqrt((n)/(m))=(b^(2))/(ac)]

If the roots of the equation ax^2+bx+c=0 be in the ratio m:n, prove that sqrt(m/n)+sqrt(n/m)+b/sqrt(ac)=0

If the roots of the equation ax^2+bx+c=0 be in the ratio m:n, prove that sqrt(m/n)+sqrt(n/m)+b/sqrt(ac)=0

if the ratio of the roots of the quadratic equation px^(2)+qx+q=0 be m:n, then show that sqrt((m)/(n))+sqrt((n)/(m))+sqrt((q)/(p))=0

If the ratio of the roots of the quadratic equation ax^(2)+bx+c=0 be m:n, then prove that ((m+n)^2)/(mn)=(b^(2))/(ac)

If the roots of the equationx^3–lx^2+mx-n=0 are in H.P., then the mean root is (i) (3n)/m (ii)(2n)/m (iii)n/m (iv)-n/m

If m and n are the roots of the equation ax ^(2) + bx + c = 0, then the equation whose roots are ( m ^(2) + 1 ) // m and ( n ^(2)+1) //n is

If the ratio of A.M. and G.M. of two positive numbers a and b is m : n, then prove that : a:b=(m+sqrt(m^(2)-n^(2))):(m-sqrt(m^(2)-n^(2)))