Home
Class 12
MATHS
[cos^(-1)x+cos^(-1)y+cos^(-1)z=pi],[x^(2...

[cos^(-1)x+cos^(-1)y+cos^(-1)z=pi],[x^(2)+y^(2)+z^(2)+2xyz=1]

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then x^(2)+y^(2)+z^(2)+2xyz=12(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)zxy+yz+zx=x+y+z-1(x+(1)/(x))+(y+(1)/(y))+(z+(1)/(z))>=6

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then x^(2)+y^(2)+z^(2)+xyz=0x^(2)+y^(2)+z^(2)+2xyz=0x^(2)+y^(2)+z^(2)+xyz=1x^(2)+y^(2)+z^(2)+2xyz=1

If Cos^(-1)x+Cos^(-1)y+Cos^(-1)z=pi,"then "x^(2)+y^(2)+z^(2)+2xyz=

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi , then

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi then

If cos^(-1)x + cos^(-1)y + cos^(-1)z = pi , then x^(2) + y^(2) + z^(2) + 2xyz is :

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n x^2+y^2+z^2+2x y z=1 2(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)z x y+y z+z x=x+y+z-1 (x+1/x)+(y+1/y)+(z+1/z)geq6

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi,t h e n x^2+y^2+z^2+2x y z=1 2(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)z x y+y z+z x=x+y+z-1 (x+1/x)+(y+1/y)+(z+1/z)geq6