Home
Class 12
MATHS
" The is "x+cot^(-1)y=tan^(-1)(x+1)/(y-x...

" The is "x+cot^(-1)y=tan^(-1)(x+1)/(y-x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

Prove that : tan^(-1) x+cot^(-1) y = tan^(-1) ((xy+1)/(y-x))

tan^(-1)(x/y)-tan^(-1)((x-y)/(x+y))=

Tan^(-1)(x/y)-Tan^(-1)((x-y)/(x+y))=

If 2tan^(- 1)(c o s e c(tan^(- 1)(x))-tan(cot^(- 1)(x)))=tan^(- 1)y then y is equal to

tan^(-1)""(x)/(y)-tan^(-1)""(x-y)/(x+y)=

Prove the following: tan^-1x+cot^-1y=tan^-1(frac{xy+1}{y-x})

If x > y > z >0, then find the value of cot^(-1)(x y+1)/(x-y)+cot^(-1)(y z+1)/(y-z)+cot^(-1)(z x+1)/(z-x)

If x > y > z >0, then find the value of cot^(-1)((x y+1)/(x-y))+cot^(-1)((y z+1)/(z y-z))+cot^(-1)((z x+1)/(z-x))