Home
Class 12
MATHS
f(x)=(1)/(sqrt([x]^(2)-[x]-6))," where "...

f(x)=(1)/(sqrt([x]^(2)-[x]-6))," where "[*]" denotes the greatest integer function."

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=(1)/(sqrt((x)-[x])) where [*] denotes the greatest integer function is

The domain of the function f(x)=(1)/(sqrt([x]^(2)-2[x]-8)) is,where [^(*)] denotes greatest integer function

The domain of the function f(x)=1/(sqrt([x]^2-2[x]-8)) is, where [*] denotes greatest integer function

The domain of definition of the function f(x)=(1)/(sqrt(x-[x])), where [.] denotes the greatest integer function,is:

If f(x)=[2x], where [.] denotes the greatest integer function,then

Domain of f(x)=sqrt([x]-1+x^(2)); where [.] denotes the greatest integer function,is

The domain of f(x)=sqrt([x]^(2)-7[x]+12) (where [.] denotes greatest integer function) is

Let f(x)=[x]+sqrt(x-[x]), where [.] denotes the greatest integer function.Then

f(x)=cos^-1sqrt(log_([x]) ((|x|)/x)) where [.] denotes the greatest integer function

The domain of the function f(x)=log_([x+(1)/(2)])|x^(2)-x-6|* where [] denotes the greatest integer function,is