Home
Class 11
MATHS
| sin nx| leq n | sin x|, n in N....

`| sin nx| leq n | sin x|, n in N`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Apply the principle of Mathematical Induction to prove that : |sin nx| le n|sin x| for all n in N.

sin x + sin2x + sin3x + ... + sin nx = (sin ((n + 1) / (2)) x (sin (nx)) / (2)) / (sin ((x) / (2)) )

The value of the integral int_(-pi)^(pi) sin mx sin nx dx , for m != n (m,n in 1) is :

Evaluate the integerals. f sin mx sin nx dx on R, m ne n, m and n are positve intergers.

|a_(1)sin x+a_(2)sin2x++a_(n)sin nx|<=|sin x| for x in R, then prove that |a_(1)+2a_(1)+3a+3+na_(n)|<=1

Prove that: s in x+s in3x++sin(2n-1)x=(sin^(2)nx)/(s in x) for all n in N.