Home
Class 9
MATHS
f(x)=2x^3-9x^2+x+12 ,\ g(x)=3-2x...

`f(x)=2x^3-9x^2+x+12 ,\ g(x)=3-2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the intervals in which the following function are increasing or decreasing. f(x)=10-6x-2x^2 f(x)=x^2+2x-5 f(x)=6-9x-x^2 f(x)=2x^3-12 x^2+18 x+15 f(x)=5+36 x+3x^2-2x^3 f(x)=8+36 x+3x^2-2x^3 f(x)=5x^3-15 x^2-120 x+3 f(x)=x^3-6x^2-36 x+2 f(x)=2x^3-15 x^2+36 x+1 f(x)=2x^3+9x^2+20 f(x)=2x^3-9x^2+12 x-5 f(x)=6+12 x+3x^2-2x^3 f(x)=2x^3-24 x+107 f(x)=-2x^3-9x^2-12 x+1 f(x)=(x-1)(x-2)^2 f(x)=x^3-12 x^2+36 x+17 f(x)=2x^3-24+7 f(x)=3/(10)x^4-4/5x^3-3x^2+(36)/5x+11 f(x)=x^4-4x f(x)=(x^4)/4+2/3x^3-5/2x^2-6x+7 f(x)=x^4-4x^3+4x^2+15 f(x)=5x^(3/2)-3x^(5/2),x >0 f(x)==x^8+6x^2 f(x)==x^3-6x^2+9x+15 f(x)={x(x-2)}^2 f(x)=3x^4-4x^3-12 x^2+5 f(x)=3/2x^4-4x^3-45 x^2+51 f(x)=log(2+x)-(2x)/(2+x),xR

f(x)=3x^(3)+x^(2)-20x+12,g(x)=3x-2

Divide P(x)=2x^4+3x^3-2x^2-9x-12 by g(x)=x^2-3

f(x)=9x^(3)-3x^(2)+x-5,g(x)=x-(2)/(3)

Find the intervals in which f(x) = 2x^(3) - 9x^(2) - 12 x -3 is increasing and the intervals in which f(x) is decreasing.

f(x)=4x^(3)-12x^(2)+14x-3,g(x)=2x-1

If f(x)=2x^(3)+9x^(2)+x+k and g(x) = x -1 be two polynomials, then g(x) will be factor of f(x) when k =

Maximum value of f(x) =2x^(3)-9x^(2)+12x-2 is

f(x) =x^3 -9x g(x)=x^2 -2x -3 Which of the following expressions is equivalent to (f(x))/(g(x)) , for x gt 3 ?