Home
Class 12
MATHS
Let a1, a2, ..., an. be sequence of real...

Let `a_1, a_2, ..., a_n`. be sequence of real numbers with `a_(n+1) = a_n+ sqrt(1+a_n^2) and a_0 = 0`. Prove that `lim_(n->oo) (a_n/2^(n-1))=2/pi`.

Promotional Banner

Similar Questions

Explore conceptually related problems

"If "a_1,a_2,a_3,.....,a_n" are in AP, prove that "a_(1)+a_(n)=a_(r)+a_(n-r+1)""

If the sequence {a_n}, satisfies the recurrence, a_(n+1) = 3a_n - 2a_(n-1), n ge2, a_0 = 2, a_1 = 3, then a_2007 is

If a_n=sin^n theta+cosec^ntheta and a_1=2 prove that, a_n=2 .

If a_1, a_2,a_3,..........., a_n be an A.P. of non-zero terms, prove that : 1/(a_1 a_2)+1/(a_2 a_3)+ ............. + 1/(a_(n-1) a_n)= (n-1)/(a_1 a_n) .

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

Let a_1,a_2…….a_n be fixed real number such that f(x)=(x-a_1)(x-a_2)……….(x-a_n) what lim_(x to a) f(x) For a ne a_1,a_2……a_n compute lim_(x to 0) f(x)

If a_1,a_2 …. a_n are positive real numbers whose product is a fixed real number c, then the minimum value of 1+a_1 +a_2 +….. + a_(n-1) + a_n is :