Home
Class 12
MATHS
If |z1| = |z2| and argz1 ~ argz2=pi, s...

If `|z_1| = |z_2| and argz_1 ~ argz_2=pi`, show that `z_1+z_2=0`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z_(1)|=|z_(2)|and argz_(1)~argz_(2)=pi, "show that" " " z_(1)+z_(2)=0.

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=-( z )_2dot

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=-( barz )_2dot

If |z_(1)|=|z_(2)|=1 and argz_(1)+argz_(2)=0 then show that z_(1)=1

If |z_(1)|=|z_(2)|and argz_(1)+argz_(2)=0, then show that z_(1) and z_(2) are tow complex conjugate numbers. '

|z_(1)|=|z_(2)|" and "arg z_(1)+argz_(2)=0 then

If for complex numbers z_1 and z_2 , arg(z_1) - arg(z_2)=0 , then show that |z_1-z_2| = | |z_1|-|z_2| |

if |z_1| = |z_2| ne 0 and amp (z_1)/(z_2) = pi then