Home
Class 12
MATHS
The value of lim(n->oo)[n/(n^2+1^2)+n/(n...

The value of `lim_(n->oo)[n/(n^2+1^2)+n/(n^2+2^2)++1/(2n)]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is

The value of lim_ (n rarr oo) [(1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ... (1+ (n ^ (2)) / (n ^ (2)))] ^ ((1) / (n))

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

The value of lim_(n->oo) [tan(pi/(2n)) tan((2pi)/(2n))........tan((npi)/(2n))]^(1/n) is

lim_(n->oo)2^(n-1)sin(a/2^n)

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals