Home
Class 12
MATHS
If a, b, p, q are real and (a-ib)^(1/3...

If `a, b, p, q` are real and `(a-ib)^(1/3)=p-iq` prove that, `(a + ib)^(1/3) = p+ iq`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,p,q are real and 3sqrt(a-ib)=p-iq" ""prove that" " " 3sqrt(a+ib)=p+iq. '

If (x+iy)^(5)=p+iq, then prove that (y+ix)^(5)=q+ip

If a,b,x,y are real and 3sqrt(x+iy)=a+ib show that , 3sqrt(x-iy)=a-ib

If (a+i)^2/((2a-i))= p + iq , prove that : p^2+q^2 =(a^2+1)^2 /(4a^2+1) .

If (a+i)^2/(2a-i) = p+iq , prove that p^2+q^2 = (a^2+1)^2/(4a^2+1)

If x, y, a, b are real numbers such that (x+iy)^(1//5)=a + ib and p = (x)/(a) - (y)/(b) , then

if (1-ix)/(1+ix)=a-ib ,then prove that a^2+b^2=1 (a,b x are real).

If (a+ib)^(5)=" p "+" iq ," where " "i=sqrt(-1), prove that (b+ia)^(5)=q+ip.

If (a+i)^2/(2a-i)=p+iq then prove that p^2+q^2=((a^2+1)^2/(4a^2+1))