Home
Class 11
MATHS
Prove that (sin x)/(1+cos x)=tan((x)/(2)...

Prove that `(sin x)/(1+cos x)=tan((x)/(2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (sin x)/(cos3x)+(sin3x)/(cos9x)+(sin9x)/(cos27x)=((1)/(2))(tan27x-tan x)

Prove that :(sin x+sin3x)/(cos x+cos3x)=tan2x

Prove that: (1+cos4x)/(cot x-tan x)=(1)/(2)sin4x

Prove that (sin x-sin y)/(cos x+cos y)=tan ((x-y)/2) .

Prove that :(sin x-sin y)/(cos x+cos y)=tan((x-y)/(2))

Prove that :(sin x+sin y)/(cos x+cos y)=tan((x+y)/(2))

Prove that (i).(sin 2x)/(1-cos 2x) = cot x" " (ii) .(1- cos 2x)/(1+ cos 2x) = tan^(2) x

Prove that sec x-cos x=tan x sin x

Prove that (sin 5x+sin3x)/(cos 5x+cos3x)=tan4x

Prove that (sin 5x+sin3x)/(cos 5x+cos3x)=tan4x