Home
Class 12
MATHS
If 0ltalphaltpi/2 and sinalpha+cosbeta+t...

If `0ltalphaltpi/2` and `sinalpha+cosbeta+tanalpha+cotalpha+secalpha+cosecalpha="7,` then prove that `sin2alpha` is a root of the equation `x^2-44x+36=0.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 0ltalphaltpi/2 and sinalpha+cosalpha+tanalpha+cotalpha+secalpha+cosecalpha="7, then prove that sin2alpha is a root of the equation x^2-44x-36=0.

If 0ltalphaltpi/2 and sinalpha+cosalpha+tanalpha+cotalpha+secalpha+cosecalpha="7, then prove that sin2alpha is a root of the equation x^2-44x-36=0.

If 0

"If "0ltalphaltpi/2 " and " sin alpha + cos alpha + tan alpha + cot alpha + sec alpha + cosec alpha = 7 " then " "show that " sin 2 alpha " is a root of " x^(2) - 44x - 36 = 0

Prove that (sinalpha+cosalpha)(tanalpha+cotalpha)=secalpha+"cosec"alpha

If a sinalpha+bcosalpha=c and a cosecalpha+bsecalpha=c show that sin2alpha=(2ab)/(c^2-a^2-b^2)

IF alpha be a root of the equation 3x^2-4x+5=0 , prove that 2alpha^2 is a root of the equation 9x^2+28x+100=0 .

If sinalpha+sinbeta=a and coslapha+cosbeta=b then prove that sin(alpha+beta)=(2ab)/(a^2+b^2)

If secalpha and cosecalpha are the roots of the equation x^2-px+q=0 , then

Prove that sin 18^@ and cos 36^@ are the roots of the equation : 4x^2-2 sqrt5 x+1=0 .