Home
Class 11
MATHS
" Let "f(x)={[(x)/(2x^(2)+|x|),,x!=0],[1...

" Let "f(x)={[(x)/(2x^(2)+|x|),,x!=0],[1,,x=0]," then "f(x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={[(x)/(2x^(2)+|x|) , If x!=0] , [1, If x=0] then

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

Let f(x)={x^(2)|(cos)(pi)/(x)|,x!=0 and 0,x=0,x in R then f is

Let f(x)=(2x+1)/(x),x!=0, where

Let f(x)=(x^(2))/(1-x^(2)),xne0,+-1 , then derivative of f(x) with respect to x, is

Let f(x)=(x^(2))/(1-x^(2)),xne0,+-1 , then derivative of f(x) with respect to x, is

Let f(x)={x^2|(cos)pi/x|, x!=0 and 0,x=0,x in RR, then f is

Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):} , then f(x) is

Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):} , then f(x) is