Home
Class 12
MATHS
sum(r=0)^(n)(-1)^(r+1)(^nC(r))/(r+1)" is...

sum_(r=0)^(n)(-1)^(r+1)(^nC_(r))/(r+1)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series sum_(r=1)^(n)(-1)^(r-1)*nC_(r)(a-r) is equal to :

The value of sum_(r=0)^(n)r(n-r)(nC_(r))^(2) is equal to

sum_(r=0)^(n)(-2)^(r)*(nC_(r))/((r+2)C_(r)) is equal to

If n is an odd natural number,then sum_(n)^(n)((-1)^(r))/(nC_(r)) is equal to

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

The value of sum_(r=0)^(n-1)(nC_(r))/(nC_(r)+^(n)C_(r+1)) is eqaul to

sum_(r=0)^n(-2)^r*(nC_r)/((r+2)C_r) is equal to

Prove that (3!)/(2(n+3))=sum_(r=0)^(n)(-1)^(r)((^nC_(r))/(r+3C_(r)))