Home
Class 13
MATHS
|[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]|...

|[a,a+b,a+2b],[a+2b,a,a+b],[a+b,a+2b,a]|=9b^(2)(a+b)

Promotional Banner

Similar Questions

Explore conceptually related problems

Without expanding the determinants,show that |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9(a+b)b^2

Without expanding, prove the following |(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=9(a+b)b^2

The value of Delta = |(a,a +b,a +2b),(a +2b,a,a +b),(a +b,a +2b,a)| is equal to

Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

Prove: |(a, a+b, a+2b),( a+2b, a ,a+b ),(a+b, a+2b, a)|=9(a+b)b^2

The determinant Delta=|(a,a+b,a+2b),(a+2b,a,a+b),(a+b,a+2b,a)|=

Prove that: |[b, c-a^2,c] ,[a-b^2,a b-c^2,c ],[a-b^2,a ,b-c^2b c-a^2a b-c^2b c-a^2c a-b^2]|=|[a, b, c],[ b ,c ,a],[ c, a ,b]|^2 .

|[a, a+2b, a+2b+3c], [3a, 4a+6b, 5a+7b+9c], [6a, 9a+12b, 11a+15b+18c]|=?

The value of |{:(a,a+2b,a+4b),(a+2b,a+4b,a+6b),(a+4b,a+6b,a+8b):}| is