Home
Class 12
MATHS
" Let "f(x)={[(x)/(2x^(2)+1x|),x!=0," th...

" Let "f(x)={[(x)/(2x^(2)+1x|),x!=0," then "f(x)],[x=0," is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)={[(x)/(2x^(2)+|x|) , If x!=0] , [1, If x=0] then

Let f(x)={[((e^(3x)-1))/(x),,x!=0],[3,,x=0]} then 2f'(0) is

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)), x ne 0, then f(x)=

Let f(x)=(2x+1)/(x),x!=0, where

Let f(x)=x(x-1)(x-2) , x in [0,2] Find f^'(x)

Let f(x+(1)/(x) ) =x^2 +(1)/(x^2) , x ne 0, then f(x) =?

let f(x)=(tan^(2){x})/(x^(2)-[x]^(2)),x>0 and f(x)=0,x=0 and f(x)=sqrt({x}cot{x}),x<0 then

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals

Let f(x+(1)/(x))=x^(2)+(1)/(x^(2)),(x ne 0) then f(x) equals