Home
Class 12
MATHS
sum(p=1)^pi(3p+2)[sum(q=1)^10sin(2qpi)/1...

`sum_(p=1)^pi(3p+2)[sum_(q=1)^10sin(2qpi)/11-icos(2qpi)/11]^p`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate p=sum_(p=1)^(32)(3p+2)(sum_(q=1)^(10)(sin""(2qpi)/(11)-icos""(2qpi)/(11)))^(p) , where i=sqrt(-1)

If p=sum_(p=1)^(32)(3p+2)(sum_(q=1)^(10)(sin""(2qpi)/(11)-icos""(2qpi)/(11)))^(p) , where i=sqrt(-1) and if (1+i)P=n(n!),n in N, then the value of n is

If p=sum_(p=1)^(32)(3p+2)(sum_(q=1)^(10)(sin""(2qpi)/(11)-icos""(2qpi)/(11)))^(p) , where i=sqrt(-1) and if (1+i)P=n(n!),n in N, then the value of n is

If p=sum_(p=1)^(32)(3p+2)(sum_(q=1)^(10)(sin""(2qpi)/(11)-icos""(2qpi)/(11)))^(p) , where i=sqrt(-1) and if (1+i)P=n(n!),n in N, then the value of n is

sum_ (p = 1) ^ (pi) (3p + 2) [sum_ (q = 1) ^ (10) (if (2q pi)) / (11) -i (cos (pi 2q)) / (11) ] ^ (o)

The value of sum_(n=1)^(10) {sin(2npi)/11-icos(2npi)/11} , is

The values of sum_(m=1)^(10)[sin(2pim//11)-icos(2pim//11)] is

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).

Find the value of sum_(k=1)^10[sin((2pik)/(11))-icos((2pik)/(11))],wherei=sqrt(-1).