Home
Class 10
MATHS
If T+1/T=8 then T^3+1/T^3=...

If `T+1/T=8` then `T^3+1/T^3=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If T_n = 3n +8 , then T_(n-1) = ________.

If t+1/t =5, then (2t)/(3t^(2)-5t+3) is equal to ……..

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= (a) -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If x=a t^2,\ \ y=2\ a t , then (d^2y)/(dx^2)= -1/(t^2) (b) 1/(2\ a t^3) (c) -1/(t^3) (d) -1/(2\ a t^3)

If t+(1)/(t)=8 ,find the value of t^(3)+(1)/(t^(3)) .

If x = ( 3t)/( 1 + t ^(3)) and y = ( 3 t ^(2))/( 1 +t ^(3)), then (dy)/(dx) at t =1 equals