Home
Class 10
MATHS
(i)sin^(6)theta+cos^(6)theta=1-3sin^(2)t...

(i)sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(6)theta+cos^(6)theta=1-3sin^(2)thetacos^(2)theta

sin^(6)theta=cos^(6)theta=1-3sin^(2)thetacos^(2)theta

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta.cos^(2)theta.

Prove the following identities: 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1=0sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1(sin^(8)theta-cos^(8)theta)=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)theta cos^(2)theta)

The value of the expression sin^(6)theta+cos^(6)theta+3sin^(2)theta*cos^(2)theta equals

int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=

Prove that sin^(6)theta+cos^(6)theta+3sin^(2)thetacos^(2)theta=1

Prove each of the following identities : (i) sin^(6) theta + cos^(6)theta = 1- 3 sin^(2) theta cos^(2) theta (ii) sin^(2)theta + cos^(4) theta = cos^(2) theta + sin^(4) theta (iii) "cosec"^(4) theta - "cosec"^(2) theta = cot^(4) theta + cot^(2) theta