Home
Class 12
MATHS
int sqrt(1+sin x)dx=2(sin(x)/(2)-cos(x)/...

int sqrt(1+sin x)dx=2(sin(x)/(2)-cos(x)/(2))+c=2sqrt(1-sin x)+c

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that : int sqrt(1+ sin x ) dx = 2 (sin. x/2 - cos . x/2 )+ c = 2 sqrt( 1 - sin x ) + c

int(cos xdx)/(sqrt(1+sin x))=2((sin x)/(2)+(cos x)/(2))+c

int sin x sqrt(1-sin2x)dx

int sqrt((1+sin x))(cos((x)/(2))-sin((x)/(2)))dx=("where "x in(0,pi))[[" (A) "(1+sin x)/(2)+c," (B) "(1+sin x)^(2)+c],[" (C) "(1)/(sqrt(1+sin x)+c),"(D) "sin x+c]]

(i) int (cos x-sin x)/sqrt(1+ sin 2x) dx (ii) int (cos x) /((cos (x/2)+sin (x/2))) dx

int (sin x - cos x )/(sqrt(sin 2x)) dx =

int sin x sqrt(1-cos2x)dx

int sin x sqrt(1+cos2x)dx

int sin x sqrt(1-cos2x)dx

sqrt(1+sin x)f(x)dx=(2)/(3)(1+sin x)^((3)/(2))+c, then f(x) equal cos x(b)sin x(c)tan x(d)1