Home
Class 12
MATHS
The value of sumsum(0<=i<=j<=n)(^nCi+^nC...

The value of `sumsum_(0<=i<=j<=n)(^nC_i+^nC_j)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of sumsum_(1leilejlt=n-1)(ij)^n c_i^n"" c_jdot

If nge3and1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are the n,nth roots of unity, then find value of (sumsum)_("1"le"i" lt "j" le "n" - "1" ) alpha _ "i" alpha _ "j"

If nge3and1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are the n,nth roots of unity, then find value of (sumsum)_("1"le"i" lt "j" le "n" - "1" ) alpha _ "i" alpha _ "j"

If nge3and1,alpha_(1),alpha_(2),alpha_(3),...,alpha_(n-1) are the n,nth roots of unity, then find value of (sumsum)_("1"le"i" lt "j" le "n" - "1" ) alpha _ "i" alpha _ "j"

Find the value of underset(0leiltjlen)(sumsum)(-1)^(i-j+1)(.^(n)C_(i)*.^(n)C_(j)) .

The Value Of 0! Is

If (1 + x)^(n) = C_(0) = C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , find the values of the following sumsum_(0 le i lt j le n)C_(i)

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(i-1)) is equal to

The sum sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(r-1)) is equal to