Home
Class 10
MATHS
" 3."(1+omega-omega^(2))^(3)=(1-omega+om...

" 3."(1+omega-omega^(2))^(3)=(1-omega+omega^(2))^(3)=-8

Promotional Banner

Similar Questions

Explore conceptually related problems

If 1, omega, omega^(2) are three cube roots of unity, prove that (1+ omega- omega^(2))^(3)= (1- omega + omega^(2))^(3)= -8

If 1,omega,omega^(2) are the roots of unity then (1-omega+omega^(2))^(3)+(1+omega-omega^(2))^3=

If omega be a complex cube root of unity,then the number (1-omega-omega^(2))^(3)+(omega-1-omega^(2))^(3)+(omega^(2)-omega-1)^(3) is: a.Divisible by 3 but not by 8 b.Divisible by 8 but not by 3 c.Divisible by both 3 & 8 d.none of these

(2 + omega + omega ^ (2)) ^ (3) + (1 + omega-omega ^ (2)) ^ (3) = (1-3 omega + omega ^ (2)) ^ (4) = 1

If omega is a cube root of unity, prove that (1+omega-omega^2)^3-(1-omega+omega^2)^3=0

Prove the following (1- omega + omega^(2)) (1 + omega- omega^(2)) (1 - omega- omega^(2))= 8

If omega is a complex cube root of unity, then find the values of: (1 - omega - omega^2)^3 + (1 - omega + omega^2)^3

If omega is the complex cube of unity, find the value of (1-omega- omega^2)^3 + (1-omega+omega^2)^3

The value of (1+omega^(2)+2 omega)^(3n)-(1+omega+2 omega^(2))^(3n) is

If omega is a complex cube root of unity, then (1+omega-(omega)^2)^3 - (1-omega+(omega)^2)^3 =