Home
Class 12
MATHS
" (ii) "tan^(-1)x+cot^(-1)(x+1)=tan^(1)(...

" (ii) "tan^(-1)x+cot^(-1)(x+1)=tan^(1)(x^(2)+x+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4

tan ^(-1)x+cot^(-1)(x+1) = tan ^(-1) (1+x+x^(2))

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

Prove statement "tan"^(-1) x +"cot"^(-1)(x+1)="tan"^(-1)(x^2+x+1)

cot(tan^(-1)x+cot^(-1)x)

cot^(-1)x=tan^(-1)x then

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

tan^(-1)(cot x)+cot^(-1)(tan x)