Home
Class 8
MATHS
" 6."(x+2)(x+3)+(x-3)(x-2)-2x(x+1)=0...

" 6."(x+2)(x+3)+(x-3)(x-2)-2x(x+1)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

(x+1)(x-3)(x+2)(x-4)+6=0

Factorise: (1)2x^(2)-x-6=0(2)a^(3)-0.216 (3) (x^(2)-3x)^(2)-8(x^(2)-3x)-20

Observe the following pattern (1x2)+(2x3)=(2x3x4)/(3)(1x2)+(2x3)+(3x4)=(3x4x5)/(3)(1x2)+(2x3)+(3x4)+(4x5)=(4x5x6)/(3) and find the of (1x2)+(2x3)+(3x4)+(4x5)+(5x6)

Check whether the following are quadratic equations : (1) (x-1)^(2)=2(x-3) (2) x^(2)-2x=(-2)(3-x) (3) (x-2)(x+1)=(x-1)(x+3) (4) (x-3)(2x+1)=x(x+5) (5) (2x-1)(x-3)=(x+5)(x-1) (6) x^(2)+3x+1=(x-2)^(2) (7) (x+2)^(3)=2x(x^(2)-1) (8) x^(3)-4x^(2)-x+1=(x-2)^(3)

Which of the following are quadratic equations in x? (i)" "x^(2)-x+3=0" "(ii)" "2x^(2)+(5)/(2)x-sqrt(3)=0 (iii)" "sqrt(2)x^(2)+7x+5sqrt(2)=0" "(iv)" "(1)/(3)x^(2)+(1)/(5)x-2=0 (v)" "x^(2)-3x-sqrt(x)+4=0" "(vi)x-(6)/(x)=3 (vii)" "x+(2)/(x)=x^(2)" "(viii)" "x^(2)-(1)/(x^(2))=5 (ix)" "(x+2)^(3)=x^(3)-8" "(x)" "(2x+3)(3x+2)=6(x-1)(x-2) (xi) " "(x+(1)/(x))^(2)=2(x+(1)/(x))+3

Without expanding, find the value of: (i) (x + 1)^4 - 4(x + 1)^3 (x - 1) + 6(x + 1)^2 (x - 1)^2 - 4(x + 1) (x - 1)^3 + (x -1)^4 (ii) (2x - 1)^4 + 4(2x - 1)^3 (3 - 2x) + 6(2x - 1)^2 (3 - 2x)^2 + 4(2x - 1) (3 - 2x)^3 + (3 - 2x)^4

Lt_(x rarr 0)(6^(x) - 3^(x) - 2^(x)+1)/(x^(2)) =

If (3x+1)^3+(x-3)^3+(4-2x)^3+ 6 (3x+1) (x -3) (x -2)=0 , then x is equal to: यदि (3x+1)^3+(x-3)^3+(4-2x)^3+ 6 (3x+1) (x -3) (x -2)=0 है तो x बराबर है: