Home
Class 13
MATHS
[" 31."cos2 theta cos2 phi+sin^(2)(theta...

[" 31."cos2 theta cos2 phi+sin^(2)(theta-phi)-sin^(2)(theta+phi)" is equal to "],[[" (a) "sin2(theta+phi)," (b) "cos2(theta+phi)],[" (c) "sin2(theta-phi)," (d) "cos2(theta-phi)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

cos2thetacos2phi+sin^(2)(theta-phi)-sin^(2)(theta+phi) is equal to

"cos"2theta."cos"2phi+"sin"^(2)(theta-phi)-"sin"^(2)(theta+phi) is equal to (i) "sin"2(theta+phi) (ii) "cos"2(theta+phi) (iii) "sin"2(theta-phi) (iv) "cos"2(theta-phi)

cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

cos 2theta cos 2phi + sin^(2) (theta - phi ) - sin^(2) ( theta + phi) is equal to

cos2 theta cos2 phi+sin^(2)(theta-phi)-sin^(2)(theta+phi)=cos(2 theta+2 phi)

Prove that cos 2 theta cos 2 phi + sin ^(2) ( theta - phi) -sin ^(2) (theta + phi) = cos ( 2 theta + 2 phi).

(sin theta-sin phi)^(2)+(cos theta-cos phi)^(2)=4sin^(2)(theta-phi)/(2)

Prove that: cos2 theta*cos2 phi+cos^(2)(theta+phi)-cos^(2)(theta-phi)=cos(2 theta+2 phi)