Home
Class 11
MATHS
If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) and (dy...

` If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) and (dy)/(dx)=ax^(2)+bx+c` then the value of a+b+c is

Promotional Banner

Similar Questions

Explore conceptually related problems

if y=(x^(4)-x^(2)+1)/(x^(2)+sqrt(3)x+1) and (dy)/(dx)=ax+b then the value of a+b is equal to

If y=(x^(4)+x^(2)+1)/(x^(2)+x+1) then (dy)/(dx)=ax+b, find a and b

if y=2^(ax) and (dy)/(dx)=log256 at x=1 then the value of a is

Let y=(x^(8)+x^(4)+1)/(x^(4)+x^(2)+1)."If"(dy)/(dx)=ax^(3)+bx. Then,

If (x+1) is the HCF of (a x^(2) + bx + c) and (bx^(2) + ax + c) , then the value of c is

If y ax^(2)+n2 and d^(2)//dx^(2)=4 amd dy/dx=4 at x=1 then values of a and b are:

If y=(a+bx(3)/(2))/(x^((5)/(4))) and y'=0 at x=5, then the value of (c^(2))/(b^(2)) is

If int(lnx)/(x^(3))dx=-(lnx)/(ax^(2))-(1)/(bx^(2))+c then the value of a+b must be _______