Home
Class 12
MATHS
If x=t^(3) and y=t^(4) then (dy)/(dx) at...

If `x=t^(3) and y=t^(4)` then `(dy)/(dx)` at `"t=-1"` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If " "x=t^(2),y=t^(3) ," then "(dy)/(dx)" at "t=-1" is "

If x=tan^(-1)t, and y=t^(3), find (dy)/(dx)

If x=2t-3t^(2) and y=6t^(3) then (dy)/(dx) at point (-1,6) is

If x=t log t ,y =t^(t) ,then (dy)/(dx)=

If x=te^(t) and y=1+log t, find (dy)/(dx)

If x=t*logt" and "y=t^(t)," then: "(dy)/(dx)=

1.If x=5t-t^(3) ,y=t^(2)+4t find (dy)/(dx) at t=1 .

If y=t^(2)-t+1," then: "(dy)/(dx)=

If x = 4t ,y =(4)/(t) ,then (dy)/(dx)=

If x=a(t-sin t) and y=a(1+cos t) then (dy)/(dx)=