Home
Class 12
MATHS
d/(dx) [tan^-1 (log(e/x^2))/(log(ex^2))]...

`d/(dx) [tan^-1 (log(e/x^2))/(log(ex^2))]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

(d)/(dx)[tan^(-1)((log(ex))/(log(e//x)))]=(1)/(xf(x))," then "f(x)=

d/(dx) (tan^(-1)((e^(2x)+1)/(e^(2x)-1)))=

If y=tan^(-1)[(log(e//x^(3)))/(log(ex^(3)))]+tan^(-1)[(log(e^(4)x^(3)))/(log(e//x^(12)))]," then "(d^(2)y)/(dx^(2))=

(d)/(dx)[a tan^(-1)x+b log((x-1)/(x+1))]=(1)/(x^(4)-1)rArr a-2b=

Prove that d/(dx)[2xtan^-1x-log(1+x^2)]=2tan^-1x

(d)/(dx)(log tan x)

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

Prove that (d)/(dx){2x tan^(-1)x-log (1+x^(2))}=2 tan^(-1)x.

(d)/(dx ) [a Tan ^(-1) x + b log ((x-1)/(x +1)) ] = (1)/(x ^(4) - 1) implies a- 2b =