Home
Class 12
MATHS
If alpha, beta are roots of x^2 sintheta...

If `alpha, beta` are roots of `x^2 sintheta-(costhetasintheta+1)x+xcostheta=0` where `alphaltbeta` and `thetaepsilon(0,pi//4)` then value of `sum_(n=0)^oo(alpha^n +((-1)^n)/beta^n)` (A) `(1-costheta)/(sintheta)+(1-sintheta)/(costheta)` (B) `1/(1+costheta)+1/(1-sintheta)` (C) `1/(1-costheta)+1/(1-sintheta)` (D) `1/(1-costheta)-1/(1+sintheta)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: (costheta)/(1+sintheta)=(1-sintheta)/(costheta)

Prove: (1-costheta)/(sintheta)=(sintheta)/(1+costheta)

Prove: (costheta)/(1-sintheta)=(1+sintheta)/(costheta)

(1-costheta)/(sintheta)+(sintheta)/(1-costheta) =___________.

(1+sintheta-costheta)/(1+sintheta+costheta)=

(1+sintheta-costheta)/(1+sintheta+costheta) =

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

If sintheta-costheta=1 ,then find sintheta.costheta

(1+costheta+sintheta)/(1+costheta-sintheta)=(1+sintheta)/(costheta)