Home
Class 12
MATHS
lim(n->oo) [1/(1.2)+1/(2.3)+1/(3.4)+...+...

`lim_(n->oo) [1/(1.2)+1/(2.3)+1/(3.4)+...+1/(n(n+1))]=`

Promotional Banner

Similar Questions

Explore conceptually related problems

underset(n to oo)lim {(1)/(1.2)+(1)/(2.3)+(1)/(3.4)+...+(1)/(n(n+1))}=

lim_(n rarr oo) ((1)/(1.2) + (1)/(2.3) + (1)/(3.4) +…..+ (1)/(n(n+1))) is :

lim_ (n rarr oo) (1.2 + 2.3 + 3.4 + .... + n (n + 1)) / (n ^ (3))

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+...+1/(6n^2)]

lim_(n rarr oo) (1.2 +2.3+3.4+ .....+n(n+1))/n^(3)=

lim_(n->oo) (1.2+2.3+3.4+....+n(n+1))/n^3

lim_(n->oo) {1/1.3+1/3.5+1/5.7+.....+1/((2n+1)(2n+3)) is equal to

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+....+1/(6n^2)]

Evaluate lim_(n->oo)n[1/((n+1)(n+2))+1/((n+2)(n+4))+....+1/(6n^2)]