Home
Class 9
MATHS
5^(x-3)*3^(2x-8)=225...

5^(x-3)*3^(2x-8)=225

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x, if 5^(x-3)x3^(2x-8)=225

Find the value of x in each of the following . (i) root5(5x + 2) = 2 (ii) root3(3x - 2) =4 (iii) ((3)/(4))^(3)((4)/(3))^(-7)= ((3)/(4))^(2x) (iv) 5^(x-3) xx 3^(2x -8) = 225 (v) (3^(3x) . 3^(2x))/(3^(x)) = root4(3^(20))

Solve 3^(x-1)xx5^(2y-3)=225

Solve : 3^(x-1)xx5^(2y-3)=225.

The equation of the ellipse whose vertices are (9,2),(-1,2) and the distance between the foci is 8 unit is (A)9(x-3)^(2)+25(y-4)^(2)=225(B)9(x+3)^(2)+25(y+4)^(2)=225(C)9(x-4)^(2)+25(y-3)^(2)=225(D)9(x+4)^(2)+25(y+3)^(2)=225

15^(x)-25.3^(x)-9.5^(x)+225>=0

Solve for x:5^(2x)-16.5^(x)-225=0

Solve for x - (2x+3)/7-(3x-3)/3= (2x-3)/5-8

Find the vertical asymptotes and holes of (3(2x+5)^3(8x-3)^2(x-3))/(2(8x-3)^2(2x+5)) .

3(x-2)<=5x+8