Home
Class 10
MATHS
" Show that "sec x+tan x=sqrt((1+sin x)/...

" Show that "sec x+tan x=sqrt((1+sin x)/(1-sin x))

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sec x+tan x=sqrt((1+sin x)/(1-sin x))

Prove that sec x+tan x=sqrt((1+sin x)/(1-sin x))

f(x)=tan^(-1)sqrt((1+sin x)/(1-sin x))

The values of x in [-2 pi,2 pi], for which the graph of the function y=sqrt((1+sin x)/(1-sin x))-sec x and y=-sqrt((1-sin x)/(1+sin x)) coincide are

Tan ^(-1) (sqrt ((1 - sin x )/( 1 + sin x )))

Show that sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A

show that , cot ^(-1) {(sqrt(1+sin x)+sqrt(1- sin x))/( sqrt(1+sin x)- sqrt(1-sin x))}=(x)/(2),0 lt x lt (pi)/(2)

Show that sqrt ((1+sin A ) /( 1-sin A))= sec A + tan A

Show that sqrt ((1+sin A ) /( 1-sin A))= sec A + tan A

Show that sqrt ((1+sin A ) /( 1-sin A))= sec A + tan A