Home
Class 20
MATHS
" 16.यद "q(y)=y^(3)+2y^(2)+y-4" तो "q(4)...

" 16.यद "q(y)=y^(3)+2y^(2)+y-4" तो "q(4)" निकालें। "

Promotional Banner

Similar Questions

Explore conceptually related problems

If p(y)=y^(6)-3y^(4)+2y^(2)+6 and q(y)=y^(5)-y^(3)+2y^(2)+y-6 , find p(y)+q(y) and p(y)-q(y) .

Subtract : 5y^(4) - 3y^(3) + 2y^(2) + y - 1 from 4y^(4) - 2y^(3) - 6y^(2) - y + 5

Find the value of each of the following polynomials at the indicated value of variables : q(y) = 3y^(3) - 4y + sqrt(11) at y = 2.

The LCM and GCD of the two polynomilas is (x^2 + y^(2) ) (x^(4) + x^(2) y^(2) + y^(4)) and x^(2) -y^(2) one of the polynomial q(x) is (x^(4)-y^(4))(x^(2) +y^(2) - xy) find the other polynomials.

" Q."4[" The area of the smaller portion enclosed by the "],[" curves "x^(2)+y^(2)=9" and "y^(2)=8x" is "]

Let the polynomials be (1) -13q^(5) + 4q^(2) + 12q (2) (x^(2) + 4 ) ( x^(2) + 9) (3) 4q^(8) - q^(6) + q^(2) (4) - ( 5)/( 7) y^(12) + y^(3) + y^(5) Then ascending order of their degree is

If the normal at four points P_(i)(x_(i), (y_(i)) l, I = 1, 2, 3, 4 on the rectangular hyperbola xy = c^(2) meet at the point Q(h, k), prove that x_(1) + x_(2) + x_(3) + x_(4) = h, y_(1) + y_(2) + y_(3) + y_(4) = k x_(1)x_(2)x_(3)x_(4) =y_(1)y_(2)y_(3)y_(4) =-c^(4)

If the normal at four points P_(i)(x_(i), (y_(i)) l, I = 1, 2, 3, 4 on the rectangular hyperbola xy = c^(2) meet at the point Q(h, k), prove that x_(1) + x_(2) + x_(3) + x_(4) = h, y_(1) + y_(2) + y_(3) + y_(4) = k x_(1)x_(2)x_(3)x_(4) =y_(1)y_(2)y_(3)y_(4) =-c^(4)