Home
Class 12
MATHS
If alpha ,beta ,gamma are roots of x^(3)...

If `alpha ,beta ,gamma` are roots of `x^(3)+x^(2)-5x-1=0` then `[alpha] + [beta] +[ gamma ]` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha ,beta, gamma are the roots of 2x^(3)-2x-1=0 then (sum alpha beta)^(2)

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

if alpha,beta,gamma are the roots of 2x^(3)-5x^(2)-14x+8=0 then find alpha+beta+gamma

If alpha,beta,gamma are the roots of x^(3)+x^(2)+x+1=0 then alpha^(3)+beta^(3)+gamma^(3)=

If alpha,beta,gamma are the roots of x^(3)-3x^(2)+4x-7=0, then (alpha+2)(beta+2)(gamma+2)=

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-3x-1=0 then alpha^(-2)+beta^(-2)+gamma^(-2)=

Tet alpha,beta and gamma be the roots of f(x)=x^(3)+x^(2)-5x-1=0 .Then [alpha]+[beta]+[gamma], where [^(*)] greatest integer function,is equal to

If alpha , beta , gamma are roots of x^(3)-3x+11=0 then equation whose roots are beta + gamma , alpha + beta , alpha + gamma is

If alpha,beta,gamma are the roots of x^(3)+3x+3=0 then alpha^(5)+beta^(5)+gamma^(5)=