Home
Class 12
MATHS
If alpha beta gamma are roots of x^(3)+x...

If alpha beta gamma are roots of `x^(3)+x^(2)-5x-1=0` then `alpha + beta + gamma`
is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha ,beta, gamma are the roots of 2x^(3)-2x-1=0 then (sum alpha beta)^(2)

if alpha,beta,gamma are the roots of 2x^(3)-5x^(2)-14x+8=0 then find alpha+beta+gamma

If alpha, beta, gamma are roots of x^(3)-2x^(2)+7x-1=0 then the value of (alpha+beta-gamma) (beta+gamma-alpha) (alpha+gamma-beta)

If alpha,beta,gamma are the roots of x^(3)+x^(2)+x+1=0 then alpha^(3)+beta^(3)+gamma^(3)=

If alpha,beta,gamma are the roots of x^(3)-3x^(2)+4x-7=0, then (alpha+2)(beta+2)(gamma+2)=

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-3x-1=0 then alpha^(-2)+beta^(-2)+gamma^(-2)=

If alpha, beta, gamma are the roots of x^(3)-px^(2)+qx-r=0 then (alpha+beta)(beta+gamma)(gamma+alpha) =

If alpha,beta,gamma are the roots of x^(3)+3x+3=0 then alpha^(5)+beta^(5)+gamma^(5)=