Home
Class 12
MATHS
lim(n->oo)(1+2+3*-n)/(n^2)...

`lim_(n->oo)(1+2+3*-n)/(n^2)`

Text Solution

Verified by Experts

The correct Answer is:
`1/2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the value of (lim)_(n rarr oo)(1+2+3++n)/(n^(2))

S1: lim_(n->oo) (2^n + (-2)^n)/2^n does not exist S2: lim_(n->oo) (3^n + (-3)^n)/4^n does not exist

lim_ (n rarr oo) (1 + 2 + 3 * -n) / (n ^ (2))

lim_(n rarr oo)[(1^(2))/(n^(3))+(2^(2))/(n^(3))+(3^(2))/(n^(3))+...+(n^(2))/(n^(3))]=?

The value of (lim)_(n rarr oo){(1+2+3++n)/(n+2)-(n)/(2)} is a.1b*-1c*1/2d* -1/2

lim_(n rarr oo)((1)/(n^(2))+(2)/(n^(2))+(3)/(n^(2))+...+(n)/(n^(2)))

lim_(n rarr oo)(2^(3n))/(3^(2n))=

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is

Consider the following statements : I. lim_(n to oo) ( 2^n +(-2)^n)/(2^n) dos not exist II. lim_(n to oo) ( 3^n +(-3)^n)/(2^n) does not exist then

lim_(n -> oo) (((n+1)(n+2)(n+3).......3n) / n^(2n))^(1/n)is equal to